Physical layer – SyncE

Presenter: Jean-Loup Ferrant Sponsored by Calnex Solutions
Physical layer

• It is possible to use the physical layer of a signal to transport a frequency reference.

• This has been used at the beginning of digital networks with 2 Mbit/s lines carrying a 2048 kHz reference.
• But when the 2 Mbit/s was multiplexed into a higher PDH rate such as 34 or 140 Mbit/s, the 2 Mbit/s is not anymore transported by the physical layer
 o it passes through buffers that are not timing transparent
 o But the PDH hierarchy was designed so that the timing remain acceptable
Physical layer vs SDH mapping

- In SDH, the mapping of a 2 Mbit/s could result in a severe corruption of timing due to VC12 pointers.
Performance of the physical layer

- When transported via a physical layer, the 2 Mbit/s can meet the template of a synchronization interface.

- When it is mapped into a VC12, the output quality only meets the traffic interface template.
SDH, « the physical layer »

• The synchronization reference chain of SDH (G.803) specifies the maximum size of a SDH network able to transport a frequency reference over the SDH physical layer over 10 SSUs, 60 SECs and thousands of kms.
 • 2 MHz or 2 Mbit/s between PRC and SEC
 • Reference frequency carried by n*155.52 Mbit/s STM-n signal
 • The output timing meets the synchronization interface template
Clock hierarchy

- A clock hierarchy has been defined
 - PRC, SSU, SEC, (regenerator)
- The SSM has been defined for traceability
- The specification of this hierarchy required almost a decade

NOTE 1 – The maximum numbers of SSU and SEC clocks in these chains is defined in ITU-T Recommendation G.803.
NOTE 2 – PRC function is defined in ITU-T Recommendation G.811.
NOTE 3 – SSU function is defined in ITU-T Recommendation G.812 (Type I)
NOTE 4 – SEC function is defined in ITU-T Recommendation G.813 (Option 1)
Other types of physical layer

• Ethernet
 • 10 G WAN bit to bit identical to STM-64
 • Non synchronous, each switch generates the output Eth signals with its own free running oscillator

• OTN
 • Another non synchronous hierachy with a free running oscillator per NE
Synchronous Ethernet

- It has been proposed in September 2004 to use the physical layer to transport a frequency reference in order to
 - Provide G.811 traceability to applications
 - Provide a timing quality independent of traffic payload

- It was decided to align SyncE on SDH
- To avoid defining a new synchronous hierarchy
- To allow mix of SDH and SyncE NEs in the G.803 reference chain

- In February 2008, the 3 recommendations defining Synchronous Ethernet were consented by ITU SG15
 - G.8261 for architecture and network limits
 - G.8262 for the definition of the clock
 - G.8264 for the definition of the SSM
Architecture of Synchronous ethernet

- In order to provide interworking between SyncE and SDH
 - A chain of 20 SDH NEs must be replaceable by 20 SyncE NEs
 - A chain of 20 NEs can mix SDH and SYNCE NEs
 - An NE can be equipped with both SDH and SyncE ports

- S:SDH
- E:Eth
- H:hybrid
SyncE requirements

• The SyncE NE
 • must have a clock compatible with SDH/SONET
 • Recovers timing from a synchronous Ethernet signal, with an SSM
 • Must be able to recover the data from an Ethernet signal
 • Must be able to provide traceability via SSM
SyncE clock: G.8262

- Compliance with SDH implies that SyncE clocks are based on G.813
 - Jitter is related with clock recovery
 - It is a port function, to recover clock and data
 - Wander is related with noise accumulation on a chain of clocks.
 - It is a clock function
 - Frequency pull-in –range
 - Must be 100 ppm on the port so that data of legacy Eth can be processed
 - Must be 4.6 ppm at clock input to comply with SDH clocks
Compliance with IEEE and SDH

- SyncE ports must recover synchronous and non-synchronous Eth signals
- SyncE signals are characterized by a SSM

- Comply with G.813
 - Frequency accuracy
 - Pull-in, Pull-out, 4.6ppm
 - Noise transfer
 - Holdover
 - Wander

- Comply with IEEE
 - Jitter tolerance -100ppm

- Data

- Equip
 - Clock
 - (G.8262)

- Ck

- SyncE signal

- Sync-E port

- Eth
 - switch

- Sync-E port

- Data

- Ck

- Sync-E port

- Sync-E port

- Data

- Ck

- Sync-E port

- Data
Hybrid network

• Has both SyncE and SDH ports

• Jitter tolerance
 • Frequency accuracy
 • Pull-in, Pull-out
 • Noise transfer
 • Wander
 • Holdover

• Jitter generation
 • Sync-E port
 • SDH/SONET port
 • Equipment
 • Clock
 • (G.8262)
 • SDH/SONET port
Interworking with legacy equipments

- Eth port
- 100ppm
- Sync-E port
- 4.6ppm
- SDH/SONET port
- 4.6ppm

- Equip
-ment
-Clock
-(G.8262)
-(G.813)

- Sync-E port
- 4.6ppm

- Equip
-ment
-Clock
-(G.8262)
-(G.813)

- Eth port
- Sync-E port
- 4.6ppm
- SDH/SONET port
- 4.6ppm

- Sync-E port
- 4.6ppm

- Eth port
- SDH/SONET port
- 4.6ppm
Need for a SSM in SyncE equipments

- SSM is needed on all kinds of chains, SDH, SyncE and hybrid
 - to provide automatic protection of a chain of NE
 - To avoid timing loops
SSM in SyncE

• Synchronous Ethernet must meet all SSM delays of SDH
 • since these values depend on network limits and G.813
 • Since the timing performance are required to be similar to SDH

• Transport of SSM messages has been defined by a cooperation between IEEE and ITU SG15
 • IEEE proposed to use an Organization Specific slow Protocol as defined in G.802.3ay

• ITU-T Q13/15 has defined a new SSM protocol
 • that requires less than 10 messages per second per OAM application
 • that does not require large calculation time from the equipment
 • that meets the G.781 timing requirements
SSM transport

• The SSM is transported in the ESMC Ethernet Synchronization Messaging Channel

• Two types of messages are transmitted
 • An event message sent immediately in case of SSM change
 • A heartbeat message
 • Sent at a rate of about 1 Hz
 • No message for 5 seconds means ESMC failure

• Quality Level data is mapped into a TLV format
• Future information might be mapped according TLV format
Updated G.781 model

- With addition of the ETY and ETH layers for SyncE needs

Figure 17/G.781 – Synchronization Distribution and Network Synchronization layer atomic functions
Conclusion

• Synchronous Ethernet provides the same quality transport of timing as SDH.
• Synchronous Ethernet does not provide transport of time, although it has been agreed that the use of ESMC might allow it.
www.calnexsol.com

Jean-Loup Ferrant
jean-loup.ferrant@calnexsol.com

Calnex Paragon Sync