Design Considerations for Packet Networks supporting Synchronous Ethernet and IEEE 1588v2

Pierre Bichon
Consulting Engineer
pierre@juniper.net

November 2009
Some Quotes for Consideration

“A synchronous transmission layer will always be there, everywhere”

“Only the transmission layer can deal with synchronization, it cannot be done elsewhere”

- Transmission Engineer

“Why do you need sync ??? This is legacy ! Sync is going the way of the dinosaurs”

“When everything has moved to IP and Ethernet, you don’t need sync anymore”

- Packet Network Engineer
Food for Thought

Can we reconcile both circuit and packet worlds and create something “better”?

Synchronization can bring a lot to the packet world

- Circuit emulation and radio hand-off support
- Very accurate ToD (network monitoring, transaction management, etc)

Networks are changing – some decisions to be made:

- Do we need sync everywhere?
- Is sync part of the infrastructure?
- Is sync a service?
 - Or both?
Agenda

1. Packet-based Architectures
2. Deploying SyncE
3. Deploying IEEE1588v2
4. Deploying SyncE and IEEE1588v2 together
Agenda

1 Packet-based Architectures
2 Deploying SyncE
3 Deploying IEEE1588v2
4 Deploying SyncE and IEEE1588v2 together
Packet-based Architectures
Change is the Only Constant

Packet networks have more diverse topologies than SDH
- Mesh, rings, dual homed rings, stars, dual homed stars, chains, …
- Number of nodes per island (ex.: ring)?
- Access vs Aggregation vs Core

What packet technologies are used
- Ethernet, MPLS, IP, but also flavors (ETHoSDH, MPLS-TP)
- And associated protocols

Who owns what
- Mobile carrier, wireline carrier, wholesale
- Trusted and un-trusted zones
- Requires boundaries with adequate features

What is (to be) deployed
- Existing (recent) network
- Greenfield deployment
- Network extension

Every network is different
Packet-based Architectures
Sync Strategy

Synchronization strategy options

- No network assistance
 - End-to-end transparent 1588v2, spot insertion of frequency/phase at the edge
- Partial network assistance
 - Boundary and transparent clocking support on selected nodes
- Full network assistance
 - Layer-1 transport of Frequency with SyncE
 - IEEE1588v2 with TC (and BC)
 - Including hybrid mode

Definition of “network assistance”

- Clock transfer/maintenance capabilities
- QoS enforcement
- Traffic Engineering
- Monitoring
Agenda

1 Packet-based Architectures

2 Deploying SyncE

3 Deploying IEEE1588v2

4 Deploying SyncE and IEEE1588v2 together
Deploying SyncE
Challenge #1: Network Design

Challenge:
- ALL network components in the path need to support SyncE

Reality check: Network Boundaries
- SDH to SyncE boundaries still not well proven (clock quality, traceability, loops)
- What about other boundaries (IEEE1588v2)
- Boundaries need expensive oscillators
- Where to start SyncE (in the core?)
- Complexity of meshed networks (not ring-only any more, like SDH)

SyncE will be deployed in an ever-changing environment
- Different from SDH - can be deployed link by link (careful design & validation)

This is layer 1= hardware upgrades

Virtualization (“I want my own clock”)
Deploying SyncE
Challenge #2: OAM

Existing SSUs to support ESMC (traceability, loops, …)

Boundaries
- SDH/SyncE
- OTN/SyncE

ESMC Performance
- When under 100% load at 100 GE
- Convergence in a distributed chassis

Adding TLVs will
- Be beneficial for monitoring
- Increase complexity (performance?)
- Introduce interop issues between SyncE vendors and with SSUs
- Phase support will increase this even further (see next slide)
Deploying SyncE
Challenge #3: Phase Support using ESMC

ESMC re-use is a good target, however
- Why build another protocol for phase support?
- What does really matter: the protocol, or the end-result?
- How different from IEEE1588 with BC/TC?
 - Could be less flexible (more embedded into systems)
 - Still expensive oscillator needed at every hop (or every line card)

Potential issues
- Phase accuracy on a distributed chassis (to be designed into the PFE)
- Inter-working with IEEE1588 (TC, or BC for non-Eth boundaries)
- Will we need a hardware upgrade again?

Caveats
- Less flexible than IEEE1588 (non Ethernet portions of the network?)
- Virtualization (“I want my own clock”)

SyncE is one part of the puzzle
Agenda

1. Packet-based Architectures
2. Deploying SyncE
3. Deploying IEEE1588v2
4. Deploying SyncE and IEEE1588v2 together
Deploying IEEE1588v2

Challenge: Network Design in an “un-deterministic” packet world

Ultimate target
- Phase accuracy (reach the microsecond level)
- Increase hop count between Master and Slaves
 - while maintaining frequency / phase accuracy

Jitter and wander
- PDV: QoS
- Network load: Traffic Engineering & CAC

Experience being built*
- Microwave
- xDSL – asymmetric bandwidth
- Network design for phase support

* not detailed here for the sake of time
Deploying IEEE1588v2
Challenge #1: Engineer for Jitter
Part 1: Latency

PTP : 64-128 B
- reference: 128B

Similarity
- L2 vs L3
- IPv4 vs IPv6 vs MPLS LER/LSR
- IP vs L2/L3 VPNs

Centralized vs distributed

No QoS: Max goes to the roof
QoS or RFC2544: similar

What matters is the baseline (min/avg)
- The more information, the better (max to be limited)

Fully loaded system
- All ports
- Large switching / routing table
- Impact of other processing

<table>
<thead>
<tr>
<th>Latency (microseconds)</th>
<th>Min/Avg</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GE - NPU</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>1 GE – L2 (centralized)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>1 GE – L3 (centralized)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>1 GE – L3 (distributed)</td>
<td>10-15</td>
<td>20</td>
</tr>
<tr>
<td>10 GE – L2 (centralized)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>10 GE – L3 (centralized)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>10 GE – L3 (distributed)</td>
<td>15-20</td>
<td>30</td>
</tr>
</tbody>
</table>
Deploying IEEE1588v2
Challenge #1: Engineer for Jitter Part 2: QoS choices

Strict Priority Queue
- Always served (CAC needed) – no extra delay
- PTP + CES (+ VoIP) (+OAM) – packet sizes small and consistent
- Some max of SPQ – depends on the rest of queuing

High Priority Queue
- Credit could be negative: could be starved / buffered
- PTP: high drop probability, low buffer size
- VoIP, Business High, OAM

Network Control Queue
- Routing protocols have different requirements (could be buffered)
- Different profile from PTP traffic

N packets on the driver after the queue: MTU has an impact (less on 10GE) – check jumbo frames
Deploying IEEE1588v2
Challenge #1: Engineer for Jitter

Part 3: Implementations

Demystifying:
- “Switching matrix” - distributed systems are more sophisticated
- ETHoSDH may not be so perfect

To be checked
- Distributed systems (between line cards)

QoS with SPQ can compensate for bursts
- Avoid peaks of temporary buffering
- Avoid packet drops

What also matters is the long term PDV
- Engineer traffic along with QoS (see next topic)
Deploying IEEE1588v2
Challenge #1: Engineer for Jitter Part 4: QoS and TC

Good quality NEs down to the access are a good thing anyway
- Needed for other things (Business High, VoIP, LTE, etc)

Is TC a way to compensate
- For poor quality switches
- For the use of QoS
- Is that really simpler

Balance complexity / cost of
- Hardware-based QoS devices with SPQ
- TC capable devices

TC is the ultimate goal
- Will eventually be needed for high accuracy phase
- Not yet clear if needed everywhere
- Centralized vs distributed systems
 - requires intelligent calculation/distribution of residence time across Packet Forwarding Engines
- TC at 10GE / 100GE
Deploying IEEE1588v2
Challenge #2: Engineer for Wander Part 1: Symmetry

Forward / reverse path
- Layer 3 routing protocols may be asymmetric, but MPLS solves the problem
- No more issues with asymmetric delays due to data rate steps (1GE, 10GE)
- Potential inter-work with Network Monitoring tools (TWAMP) to calibrate it

Check the NEs have the same behavior in upstream / downstream (QoS impact)

Physical networks:
- use fiber instead of copper
- xDSL: we have to live with it – slaves to cope with it

What matters is that the asymmetry keeps stable
Deploying IEEE1588v2
Challenge #2: Engineer for Wander Part 2: Network Load

New rules of NGMNs
- Network convergence
- Multiservice

Link load
- Core: 50%
- Edge/Access: US not at 100%
 - Fiber P2P star: DS 100%
 - Ring or MW chain: 100% on first DS link, then less and less

L2 or L3 protocols: little control (shortest path at best)

MPLS: brings control
- MPLS DiffServ Traffic Engineering to control congestion over paths
- MPLS CAC to control traffic classes
- Ramp up can better be managed

Wholesale islands
- Require strong SLAs
Deploying IEEE1588v2
Challenge #2: Engineer for Wander Part 3: Delay jumps

Network failures, re-routing, operational mistakes
 ▪ There are also some planned/known delay jumps
 ▪ Special case of AMP

What matters: a delay jump is stable and deterministic

MPLS DiffServ Traffic Engineering to manage delay jumps
 ▪ TE path computation
 ▪ Detection
 ▪ MPLS OAM P2P and E2E
 ▪ Protection
 ▪ Fast Reroute (FRR): node - link - path
 ▪ Make before break, Non-revert mode
Deploying IEEE1588v2
The role of MPLS for Sync – Also Multicast

Usual assumptions:
- Too complex to deploy and manage
- Access networks are not multicast capable

Converged networks require multicast anyway (multiplay)

Multicast MPLS is
- Simpler to manage
- More deterministic than IP multicast

Traffic Engineering can be used for Multicast also
- Including protection

Benefits
- Scale the PTP Master (direct impact on cost and stability)
- Increase PTP performance
Deploying IEEE1588v2
The role of MPLS for Sync – Sync as a Service

What is Sync: in a packet network, is sync part of transmission, or a service, or part of network control? Something else?

Usual assumption: MPLS cannot be everywhere, too expensive

New rules apply
- MPLS moving from routing to transmission
 - “The Purple Line” - Kireeti Kompella
- MPLS is already in the core
- MPLS is already in the aggregation
- MPLS can be as far as in the access (MPLS-TP is an example)

MPLS to bring flexibility
- Decouple transport and service
 - « Seamless MPLS » (draft-leymann-mpls-seamless-mpls-00.txt; Oct. 20th, 2009)
 - Sync as a service
 - 1588 Masters are Service Nodes
- Direct and protected connections to the Masters
 - E-Line, L2 VPN, L3 VPN
- Network engineering without constraints: place / move your Service Nodes freely
Agenda

1 Packet-based Architectures
2 Deploying SyncE
3 Deploying IEEE1588v2
4 Deploying SyncE and IEEE1588v2 together
Comparing SyncE and IEEE1588v2

<table>
<thead>
<tr>
<th></th>
<th>Synchronous Ethernet</th>
<th>IEEE 1588v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of Deployment</td>
<td>Disruptive</td>
<td>Non-Disruptive (except if TC and BC are needed)</td>
</tr>
<tr>
<td>Cost of Deployment</td>
<td>Inexpensive for greenfield
Expensive for upgrade (Capex +Opex)</td>
<td>Inexpensive (except if TC and BC are needed)</td>
</tr>
<tr>
<td>Ubiquity</td>
<td>No (Ethernet only)</td>
<td>Yes (Ethernet, xDSL, Microwave, Cable, FTTx, femtocell, etc)</td>
</tr>
<tr>
<td>Frequency/Phase Future-proof</td>
<td>No - Frequency only (Except if ESMC used for Phase But HW upgrades)</td>
<td>Yes (Frequency & Phase)</td>
</tr>
<tr>
<td>Deterministic behavior</td>
<td>Yes</td>
<td>Under certain conditions (better if using BC and TC)</td>
</tr>
<tr>
<td>Requires Careful Engineering</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtualization</td>
<td>No</td>
<td>Yes (if overlay)</td>
</tr>
</tbody>
</table>
Combining SyncE and IEEE1588v2

Why combined SyncE & IEEE1588v2 ?
- Algorithms to enhance quality of both; clock failover; cross boundaries

It is not only a slave problem
- Also in any boundary node (islands)
- It makes sense to plan BC and SyncE in the same NE
- Will eventually make sense to combine TC and SyncE in the same NE

May well be required in every Node / POP
- Where applications are to be supported

Open question: what is the best way to implement ?
- Combined algorithms (“hybrid mode”)
- Combined protocols (ESMC & TC ?), including OAM
- Hardware upgrade ?

SyncE & IEEE1588v2 are complementary
Key Takeaways

Adding clocking to packet networks can be gradual
- Actual deployment will take time

MPLS and Traffic Engineering can play an important role
- e.g. “Sync as a Service”
THE NEW NETWORK IS HERE.
everywhere