IEEE-1588 and Synchronous Ethernet – the Whole is Greater Than Its Parts

Adam Wertheimer
Systems Architect
Microsemi Corp
+1-613-270-7235
adam.wertheimer@microsemi.com
Introduction

- Delivery of Frequency via Synchronous Ethernet
- Methods for delivering phase
 - Phase over Unaware networks
 - Phase over Partially aware network
 - Phase over Aware networks
- Comparison of results using different methods
Use case – SyncE for frequency distribution

Advantages

- Synchronous Ethernet extends the SONET/SDH timing model to Ethernet
- Meets all existing frequency requirements via the bit rate of the Ethernet physical layer
 - Independent of packets and loading
- Need to upgrade equipment in the Ethernet packet chain to support SyncE
- Need unbroken chain of SyncE equipment from frequency source to end application
 - May use SONET or PDH to add timing to Ethernet at some intermediate point in the network (i.e. at egress from SONET over packet network to Ethernet network)

Fully approved in ITU-T G.8262
SyncE Syntonization
Transition from Frequency to Frequency and Phase
Terminology: Aware networks

- **Aware**
 - Addition of Boundary clock at each node in the network
 - According to ITU model current under study
 - Split up the network into smaller pieces
 - Needed for end-to-end time of day performance

From IEEE Std 1588-2008 page 32
Network Types

- **Unaware networks**
 - No processing of the PTP packets at intermediate nodes by Boundary Clocks

- **Partially Aware**
 - Some Boundary Clocks in the network but not at every node
 - May be needed for existing networks during transition
 - May allow phase transfer without upgrading all network elements in network

- **Aware Networks**
 - All nodes in the network have Boundary Clocks
Network Types

- Unaware
- Partially Aware
- Aware
Unaware No On-Path Support

IEEE1588 Server

IEEE1588 Telecom Slave

PRS/PRC

G.811 PRC
G.8272 PRTC
G.811 PTM
G.8263 Opt. 2
G.8273.2 BC
"G.8261" OC
End Application
ITU-T G.8265., Precision time protocol telecom profile for frequency synchronization

- Published in October 2010
- Includes the set of PTP options to allow frequency transport
 - Integrate with the existing G.781 selection mechanism using SSM and existing frequency sources
Use case
Phase over Partially aware networks

- Not currently under study in standards
- Too many network types and configurations
- Unaware phase profile
- Unaddressed in standards
- Challenges
- May be possible in a managed network
 - Single carrier with careful engineering of link utilization and routing
Aware Network
Partial On-Path Support without SyncE Syntonization

PRS/PRC

PRTC

IEEE1588 Server

IEEE1588 Client and SyncE EEC

G.811 PRC
G.8272 PRTC
G.811 PTM
G.8263 Opt. 2
G.8273.2 BC
“G.8261” OC
End Application
Results pending
Aware Network
Partial On-Path Support with SyncE Syntonization

PRS/PRC
SONET/SyncE Distribution
PRTC
IEEE1588 Server
IEEE1588 Client and SyncE EEC

G.811 PRC
G.8272 PRTC
G.811 PTM
G.8263 Opt. 2
G.8273.2 BC
"G.8261" OC
End Application

© 2012 Microsemi Corporation

Power Matters.
Results pending
Network Types

- Unaware
- Partially Aware
- Aware
Aware Network
Full On-Path Support without SyncE Syntonization

PRTC
IEEE1588
Server
PRS/PRC
SONET/SyncE
Distribution
IEEE1588
Client
and SyncE EEC

G.811 PRC
G.8272 PRTC
G.811 PTM
G.8263 Opt. 2
G.8273.2 BC
“G.8261” OC
End
Application

© 2012 Microsemi Corporation
Results pending
Aware Network
Full On-Path Support with SyncE Syntonization

© 2012 Microsemi Corporation
Results pending
Summary

- Phase transfer results for various networks as shown in this presentation
- The use of aware network with SyncE support give the best performance
- The use of SyncE provides improvement in the partially aware case
- SyncE and IEEE-1588 together gives the best performance

<table>
<thead>
<tr>
<th>Phase transfer (ns)</th>
<th>Partially Aware</th>
<th>Aware</th>
</tr>
</thead>
<tbody>
<tr>
<td>No SyncE support</td>
<td>-</td>
<td>Better</td>
</tr>
<tr>
<td>With SyncE support</td>
<td>Good</td>
<td>Best</td>
</tr>
</tbody>
</table>